
TETRAS - PILOT 1

Water reclamation from landbased RASplant

6.11.2025
Final TETRAS Event
Danish Bio-Economy Conference

Sylvie Braekevelt Mie Højborg Thomsen Caroline Elisabeth Flyger

Introduction to Tetras Pilot 1

Pilot 1 Objectives


- Demonstrate water reclamation from RAS (Recirculating Aquaculture Systems)
- Use membrane technology for purification
- Evaluate the reuse of RAS wastewater as technical water for other industries
- Examine economic feasibility of a full-scale RAS plant

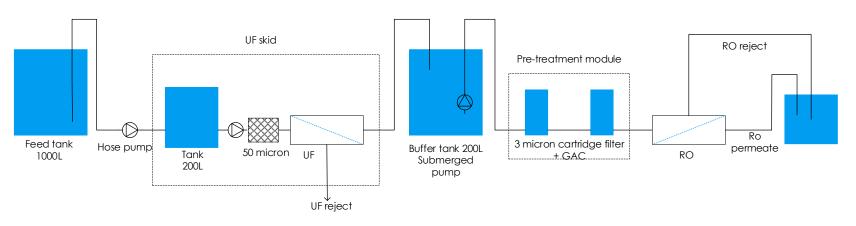
Key Technologies Tested

- Ceramic Ultrafiltration (CUF)
- Reverse Osmosis (RO)
- Membrane Distillation (MD)

Why This Matters (Business Drivers)

- Stricter discharge regulations and water scarcity increase operational risk.
- Circular water solutions reduce freshwater intake, improve compliance, and strengthen ESG.
- RAS growth demands reliable non-potable technical water for industrial uses.

The test set-up


Objective & Scope

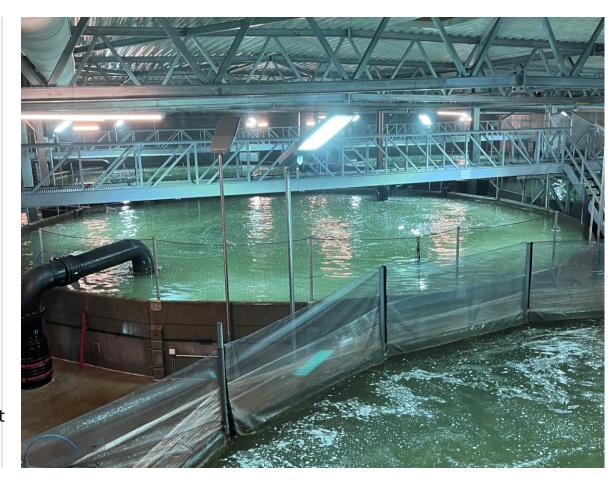
Produce technical water of near-drinking quality from RAS wastewater using membranes (CUF, RO, MD)

Pilot Test Setup

- •Step 1: Pretreatment Mechanical filtration & activated carbon
- Step 2: Ultrafiltration (UF) Ceramic membranes for suspended solids removal
- Step 3: Reverse Osmosis (RO) High-recovery desalination process
- •Step 4: Membrane Distillation (MD) [Additional Test] Evaluating alternative desalination

Test location: Skagen Salmon – RAS Facility

Overview of Skagen Salmon:


- •Established in 2020, state of the art saltwater-based RAS facility
- •Produces **3,800 tons of salmon per year** (~1 million fish)

Water Management & Treatment:

- •Multi-step treatment process:
- Mechanical filtration (drum filter, 50 μm)
- o Biological filtration (MBBR) & fine polishing
- o **Deoxygenation & ozonation** for disinfection

External wastewater treatment before discharge to Skagerrak

- •Discharges 150 m³ wastewater per hour
- •90% reduction in nitrogen & phosphorus discharge through treatment

Results showing satisfying permeate water qualities

Permeate Water Composition & Quality

- RO Permeate (65% Recovery):
 - Conductivity reduced from 1700 mS/m to 25 mS/m
 - Chloride reduced from 14,000 mg/l to 55 mg/l (below drinking water limit)
 - Ammonia < 1 mg/l, requiring further validation
- Membrane Distillation (MD) Permeate:
 - High purity water, low conductivity (0.26 mS/m)
 - Chloride <1 mg/l, well within safe limits
 - Ammonia (2.1 mg/l) exceeds drinking water standards

High quality water offers plenty of opportunities for reuse

Application Potential for Permeate Waters in Lolland-Falster

1.Industrial Use:

- **1.Cooling Systems:** Prevents scaling & corrosion
- **2.Cleaning & High-Pressure Cleaning:** Leaves no residues
- **3.Concrete Production:** Ensures durability & strength

2.Energy & PtX Technologies:

Hydrogen Production: Need further purification to meet ultra-pure water (UPW) requirements

The reuse water does not fully meet Danish drinking water standards

 Minor adjustments necessary to comply: ammonia stripping and pH adjustment

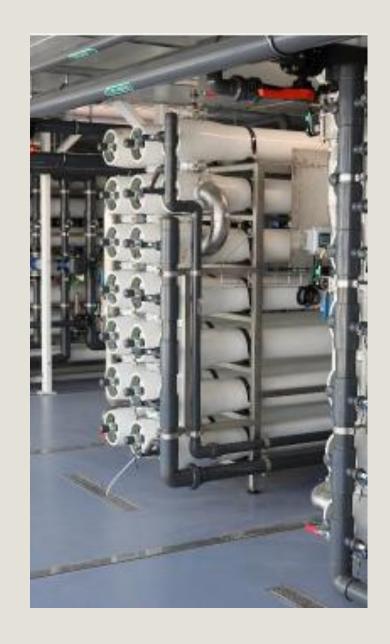
Reject Water: Risks and Reuse Pathways

Limitations

- **Not suitable for agriculture:** can be used as fertilizer, rich in nutrients (nitrogen), but high salinity and chloride could harm soil health.
- **Not suitable for biogas production**: High salt levels and low biodegradable organic matter hinder anaerobic digestion.
- Cannot be discharge to sea: High chloride, nitrogen, and metals require additional treatment for compliance with environmental regulations
- Require treatment before discharge to local: High salinity, ammonia, and heavy metals disrupt treatment processes and require advanced technologies for regulatory compliance

Potential Solutions:

- Dilution with fresh water to reduce salinity.
- Use of salt-tolerant crops (halophytes) for specific regions.
- Treatment technologies to remove heavy metals (e.g., filtration, adsorption).
- Ammonia management strategies (e.g., volatilization).



Perspectives to turn the pilot into commercial projects

• Conduct comprehensive technical and economic assessments for fullscale installation.

Include sensitivity to energy price, recovery rate, and membrane life.

- Determine reject water strategy and manage risk
 - Map regulatory landscape for treatment & discharge in the Baltic Region
 - Finalize realistic pathways for the reject water
 - Quantify reject water treatment costs
- Water quality: validate ammonia removal to meet Danish drinking water limits

Ramboll

What it takes to move on

- Continued coastal RAS **site access** for assessments and test validations.
- **Vendor engagement** for water treatment technology incl. ammonia stripping: partner with several to build integrated offers. Offer turnkey and quick-turn pilots to accelerate adoption.
- Joint workshops with regulators/utilities about reject water management: regulatory drivers to go hand in hand with engagements to improve regional water resilience in vulnerable regions with high potential (e.g. Lolland-Falster)
- Detailed design and **local business cases** including reject water

Ramboll